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Introduction

N

" @ Prediction of Human Behavior can be approached in
various ways and is a complex, challenging problem.

# PSI sought appropriate methods for modeling this.
# We evaluated model architectures for suitability.
# Models should evolve with new knowledge.

# Recent research suggests need to incorporate
knowledge of experts in human behavior, and who
may not have experience with M&S.

# Our Goal: Provide an intuitive environment that
facilitates capture of expert knowledge, and can
serve as a framework for easily expanding models.
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Problem Statement

\

N

L

# Predicting the behavior of an individual or group,
e.g., small cell or whole society.

n This is a complex problem
# Which framework or approach works best?
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Approach to the Problem ﬁ

" @ Treat each individual or group as a system.

# Develop an approach that leverages
knowledge of experts, and is flexible.

# Apply and extend traditional Control Theory
to the problem.

N
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General Form of a Prediction Model
(Discrete State Space)
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System Response @ Time T: Z(T) =[Z,(T), Z,(T), ..., Z_(T)]
Driving Force: U(T) = [U(T), U,(T), ..., U(T)]

Want to Predict IZ\

August 17, 2004 Prediction Systems, Inc. 5



History & Time Horizons
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General Modeling Approaches @
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# Prediction problem has been shown to be difficult,
and is often misunderstood.

# Constructing accurate models that reflect system
behavior falls into two categories:

= Naive Models
s Structured Models
= Hybrid Models (Naive + Structured Models)
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Naive Models ﬁ

# Use generic approaches, e.g. neural nets.

# Linear regression models using historical data
& trained

N
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Structured Models w

‘@ Use the “physics” of the system

# Build on prior knowledge of internal dynamics of
system.

# Draw on knowledge of experts.
# Require far less data.

# Can have naive (empirical) components to
account for behavior that can not be described
by “physical” mechanics, and that may be used
to optimize prediction accuracy.

N
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Comparing Prediction Accuracy

(Measures of Error)
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RN[Z(TF 1)] =

Sequence of normalized residuals:

2(T+ 1) - 2(T+ 1)
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Z(T+71)
1 E 2(T+ 1) — Z(T+ 1)
E = RNIZ(T =
£ E{ [2(T+ T)]} T;-Tg T=T, Z(T+ 1)
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Generic Modeling Framework ﬁ

Q¥
State Space Framework
W \V
U X Z
> DYNAMIC > OBSERVATION
DRIVING SYSTEM SYSTEM MECHANISM SYSTEM
FORCES F STATE H RESPONSES
(OBSERVABLE) : (Conceptual) : (OBSERVABLE)
C
SYSTEM
OPERATOR

State of System X(T) = [X,(T), X,(T), ..., X,(T)]
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Comparison of Models
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Artificial Intelligence (AI) Models

- Naive Models -

-ﬁeneral Pattern Recognition
eNeed to be Trained

e(Good for some problems: | ——=
=Moving 3D Objects i
=Fuzzy Images i % —
*Encryption

=Homogeneous models | _° |

=Stationary Problem [

Neural Net

eU are input patterns

Tal

e[ ess suited to non-stationary pro

blems

=Require non-homogeneous models
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Expert Intelligence (EI) Models ﬁ

" @ Use more of the “physics” of the problem.

# A discrete event environment based on the
state space framework.
= Vector spaces can contain discrete states

= Experts translate behaviors into simple rules with
small number of parameters.

# Leverages subject area experts.
# Basic example built using GSS...

N

August 17, 2004 Prediction Systems, Inc. 14



EI-AI Hybrid Models

and Al
eSmall amounts of non- | El,
repeating data improve El;
accuracy. El, l
eIntroduces “physics” U %

eU are input patterns
*EI Models are: 1 g {
eSimpler than Al L —= "
eFaster than Al E i E
eRequire less data Te Ty —
eMore accurate

eRequire no (or much less) training

eOverall more effective (faster and accurate) than pure Al

vvy

A A

Al > 7
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EI with Optimization

eIntroduce Optimization I
to model environment

El,
El,

El, '______l

AIRIL

eReplace Al with EI model
*El parameters: { - El, — 7
= account for lack :
of knowledge —+ El, |

= are selected with care
eU are input patterns

GSS Optimization Facility

eOptimization is built into PSI's GSS modeling environment
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General Simulation System (GSS™) @

# A discrete event-based simulation development
environment built by PSI.

# Uses Computer Aided Design (CAD) technology.
# Supports large scale simulations.

# Has a simple, high-level language for describing
rules and data.

# [s easily used by experts to codify rules without
need of complex programming languages.

N
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Accuracy Considerations

N

@ Additional accuracy can be obtained by modeling the
driving forces.

# Two aspects of a model represent additional information
not generally contained in response data:
= Expression of the structural properties of the system
= Modeling the driving forces.

#® We want to develop models without violating the rules of
parsimony.
= Minimize unknown parameters (e.g., curve fitting coefficients).
s Use structural knowledge of the system.
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Summary

-@Recent-literature stresses the need for subject matter
experts (SMEs) when modeling human behavior.

# Al, EI, EI-AI Hybrids and EI Optimization were compared.

# The CAD approach of the General Simulation System
(GSS) allows SMEs to apply knowledge without deep
computer knowledge.

# The EI approach with optimization provides a framework
for SMEs to apply their expertise on human behavior, and
an architecture that can easily support new knowledge.

# This investigation merely scratches the surface of
modeling human behavior.

# The acceleration of technological advances in related
areas will aid this work.
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Background on PSI

@/Modeling and Simulation (M&S) company founded in 1974.
# Expertise in M&S, Planning Tools & CAD mostly for DoD.
X

Founders have deep experience in Control Theory,
Mathematics, SW Engineering & Design.

# In 1982, PSI created a large-scale, discrete event system
environment named the General Simulation System (GSS).

# Run Time Graphics (RTG) supports fast, interactive GUI.

# Large collection of models including radio systems,
network elements.

# Work with DARPA and AFRL fostered interest in
modeling human behavior.
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GSS Simulation Architecture

(Top View of Model Hierarchy)
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GSS Simulation Architecture

(Deeper View — more detail on Model Hierarchy)
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