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ABSTRACT 
 
Prediction of human behavior can be approached in various 
ways.  A recent study and overview of this topic is contained in 
the report to the National Research Council, [9].  Our goal was 
to determine appropriate methods that are suitable for modeling 
the varied characteristics of this behavior.  For example, humans 
engage in extremely complex decision processes.  Most of these 
involve discrete choices that are not easily described in common 
mathematical terms.  We wanted to investigate methods that 
support characterization of these behaviors.  We also wanted to 
determine their suitability for development of models that can 
evolve as we learn more about this ancient yet currently popular 
topic.  This imposes considerations regarding model 
architectures that can be expanded.  Lastly, recent research 
indicates that we must provide for incorporating knowledge by 
subject area experts who are schooled in neither modeling nor 
mathematics.  Restated, our goal was to provide an intuitive 
environment for modeling that eases the burden of capturing 
expert knowledge while providing a framework for easily 
expanding models as this knowledge base is increased. 
 
Keywords:  Prediction, Modeling, Human Behavior, Control 
Theory, AI, Expert Intelligence. 
 
 

STATEMENT OF THE PROBLEM 
 
We are concerned with predicting behavior of an individual or 
group, where groups can be a small cell or large society.  We 
treat each of these as a system. 
 
A vector of observable response data, Z, can characterize the 
system behavior we want to predict.  The components of this 
vector can be numbers or discrete characterizations, e.g., colors 
(red, yellow, green), sizes (large, medium, small), vehicles 
(train, bus, car, plane), etc.  The set of possible states must be 
defined. 
 
We can also observe influences on the system characterized by a 
vector U.  The components of U can also be numbers or discrete 
characterizations as with Z. 
 
To characterize the prediction problem, we will use a model of 
the system as shown in Figure 1.  We denote the observable 
system response at a discrete time T by the vector Z. 
 

Z(T) = [Z1(T), Z2(T), …, ZM(T)] (1) 
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Figure 1.  General form of a prediction model. 
 
 
We call the vector, U, of influences at time T the driving force 
vector. 
 

U(T) = [U1(T), U2(T), …, UK(T)] (2) 
 
To be useful in predicting the future values of Z, the components 
of U must be directly observable, and must affect the response.  
Typically the driving force is unpredictable.  Otherwise, it could 
be incorporated as a response to another driving force with a 
further lead, or be treated as a known function of time. 
 
 

HISTORY AND TIME HORIZONS 
 
Refer to Figure 2.  Given the current time T, we want to predict 
the observable Z at time T+τ, i.e., Z(T+τ), where τ takes on the 
values 1, 2, …, TP, where TP is the maximum time horizon for 
predictions (TP = 12 τ in the example). 
 
Our goal is to develop a model that operates on the driving force 
vector, U, to produce sufficiently accurate predictions Z(T+τ).   
The accuracy requirement is defined by the application.  Its 
measure is defined, implicitly if not explicitly, by a set of 
probability statements.  For example, if vector Z is to 
characterize an observable that takes on discreet values, then a 
prediction is composed of the probability that it will take on a 
particular discrete value.  The components, z1, z2, and z3, can be 
real numbers representing the probabilities that selected discrete 
values will occur.  Depending upon the technique used to 
measure accuracy, it may be necessary to state the confidence in 
the probability statement. 
 
If component z1 takes on real values, then a prediction is 
composed of upper and lower limits on the value of z1, shown in 
Figure 2, and the probability that z1 will fall within those limits.  
Again, depending upon the measurement technique, a 
confidence statement may be necessary. 
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Figure 2.  Illustration of prediction data. 
 
To characterize the statistics required to produce the probability 
statements, the following definitions are offered. 
 

TP - Number of future time steps from the current time 
step to the future time horizon for which the system 
response is being predicted. 

 
TB - Number of past time steps from, and including, the 

current time step to the looking back horizon, used 
to define the probability statements. 
 

 NS -  Number of mutually exclusive "TB" sample sets 
(ensembles) of history data available for testing the 
probability statement. 

 
In other words if, TT is the total number of sample points of 
history data, then 
 

T
S

B

TN   =  
T

. (3) 

 
Multiple sample sets are needed to identify model parameters 
used to maximize prediction accuracy.  This is because, once a 
set of history data is used to optimize the model, it can no longer 
be used to measure prediction accuracy, see [2].  One must use a 
new “hidden” set to perform this measurement.  Depending 
upon the model, some portion of the data may be needed to 
initialize the internal model memory.  This makes it difficult to 
identify model parameters when there is very little data.  This is 
especially important when dealing with neural net type models 
requiring reasonable amounts of training data. 
 
It should be noted that we assume the systems we are modeling 
are bounded based on the concept described in [2].  This implies 
that measures consist of a finite number of sample points, taken 
at discrete times, whose values are bounded.  We also assume 
that the system is stable, i.e., bounded inputs yield bounded 
outputs. 
 
 

GENERAL APPROACHES TO MODELING 
 
The prediction problem has been shown to be difficult, [2], and 
often misunderstood, [1].  Constructing models that accurately 
reflect system behavior generally fall into two categories: those 
that are naïve and those that are structured using the “physics” 
of the system.  Naïve models use generic approaches, e.g., linear 

regression, and are not derived from physical properties of the 
system.  The history data, and particularly the response data, is 
used to determine model coefficients or parameters using some 
form of optimization.  In the case of neural nets, this is called a 
training period. 
 
Structural models are built based upon prior knowledge of the 
internal mechanics and dynamics of the physical system.  This 
knowledge comes from those contributing to the modeling 
process.  They may not look at the data until the model is to be 
tested.  The equations of physics are structural models.  An 
example is Einstein’s model of light rays bending around the 
sun.  His predictions were made years in advance of the data 
becoming available. 
 
Structural models are very useful when there is very little data 
available.  However, even structured models can have a naïve 
(empirical) component to account for behavior that cannot be 
characterized in terms of physically justifiable mechanics.  This 
is typically introduced using parameters within the structure that 
are optimized to maximize prediction accuracy. 
 
 

COMPARING MODEL PREDICTION ACCURACY 
 
Models of a system can be compared in terms of their accuracy 
based upon measures of error.  This can be accomplished using a 
measure of the sequence of differences between predictions and 
observed values of the response.  A convenient measure uses the 
sequence of normalized residuals up to T, 

RN[Z(T+ τ)] = 
)Z(T

)Z(T-)Z(T
τ+

τ+τ+
, (4) 

over the period from the looking back horizon, TB.  This 
measure is denoted by εz:  
 
εz = E{ }RN[Z(T+ )]τ  =  

BT T-T
1

 •
T

T = TB

∑
Z(T+τ) - Z(T+τ)

Z(T+τ)  

(5)

To compare model accuracies, one can compute the error 
statistics for the above measures using data that has not been 
used to build the models.  If the data has been used to build the 
models, then one is comparing how well the model fits the 
history data, not how well it predicts the future, see [2]. 
 
 

A GENERIC MODELING FRAMEWORK 
 
Physicists and engineers responsible for designing airplanes, 
power generators, and missile guidance systems have a common 
goal to “get it right”.  They are aware of the potential cost of 
failure if they don’t.  They are experienced in the modeling 
process, and how to ensure reduction of potential error in their 
designs as well as in system operation.  The State Space 
framework has been evolved by these experts for characterizing 
dynamic systems. 



The State Space Framework 
 
The State Space framework, shown in Figure 3, is commonly 
used in engineering and physics, [1], [3], [4], [6], [7], [15].  It 
has been shown to encompass the most general modeling 
problem, see for example Gelb, [5], or Schweppe, [12].  It 
provides an excellent framework upon which to develop and 
evaluate models.  This framework has evolved to describe 
discrete event systems as described in the next section. 
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Figure 3.  The State Space framework. 
 
We start with basic definitions.  The state of a system is defined 
as a set of properties that, along with the input driving forces to 
the system, are sufficient to describe the dynamic behavior of 
the system: 
 

X(T) = [X1(T), X2(T), …, XN(T)] (6) 
 
where X(T) is a vector valued function of time in some n-
dimensional space.  Some of these properties may be 
observable, but none need be.  The important criterion is to 
select a set of properties which simplifies the modeler's 
conceptual view of the internal "mechanics" of a system, i.e., 
how its components operate, causing the system to change with 
time. 
 
We note that W and V are covariance matrices used to represent 
unknown random variations in the model and observation 
mechanism.  These can be characterized using a Kalman filter, 
[2], [5], [6], [7], [12], to provide a maximum likelihood estimate 
of the current state, X(T), of the system.  For the purpose of this 
discussion, we can ignore these. 
 
In many cases, the conceptual properties of the system cannot be 
measured, at least for economic reasons.  For example, we can 
envision a market as being composed of a mass of people who 
enter the "market place" upon making a decision to buy or sell.  
Upon striking a deal which satisfies their desire to buy or sell, 
they leave the market place.  We can write the "equations of 
motion" which describe their rate of entry, their number at any 
time, and rate of departure based on external influences.  
Whether we can observe these properties directly is 
unimportant, as long as we can relate them to things we can 
observe, such as high price, low price, and volume of trading for 
the time period of interest.  The objective is to predict X(T+τ), 
the state of the system at a future time step. 
 
To this end, a dynamic model of the form  
 

X(T+1)  =  F[X(T+1), X(T), U(T), T] (7) 
 
is used.  Thus, the next state of the system can depend upon 
itself X(T+1) (i.e., it is nonlinear), the current state X(T), the 

external influences or driving forces U(T), and directly upon 
time, T. 
 
Once a set of attributes representing the state of a system has 
been selected, the modeler can describe the state transition 
process in terms of its causes and effects.  To do this, the 
modeler must describe the conceptual relationships perceived to 
exist in the system.  These relationships, which must be 
described by the modeler, typically represent significant 
additional information about the structure of a system, which 
can lead to a corresponding improvement in model accuracy. 
 
The convenience of using the state space framework comes 
about by a separation of the observation mechanism, H, from the 
conceptual dynamics of a system.  It is this separation of 
conceptual variables, X, from observations, Z, which affords the 
modeler a powerful tool for mathematically formulating his 
conceptual knowledge about the structure of a system. 
 
If the observation vector, Z, can be derived from the state vector, 
X, at any time T via a relationship of the form: 
 

Z(T)  =  H[X(T), T] , (8) 
 
then, given the prediction of X(T+1) from our dynamic model 
Eq. (7), we can determine Z(T+1).  In addition to being a 
general formulation for dynamical systems, experience has 
shown that this separation of observation from concept allows 
the modeler to more easily translate his knowledge of system 
structure into an algorithmic representation. 
 
In future sections we will have cause to view Eq. (7) and Eq. (8) 
as a single transformation, C, denoting the relationship between 
the driving force vector at time T, and the observation vector at 
time T+τ. 
 

Z(T+τ)  =  C[X(T), U(T)] (9) 
 
We will refer to C as the system operator, reference Figure 3. 
 

APPROACHES TO MODELING SYSTEM BEHAVIOR 
 
Although we have described our model of a dynamic system 
using an equation, Eq. (7), there are many ways to obtain the 
transformation of driving forces, U, into the next state, X.  For 
example, one can write algorithms containing rules: IF this 
occurs… , THEN do that … .  Such algorithms can even be in 
the form of neural networks.  In general, the dynamic system, F, 
can be a large model, composed of many submodels, working 
together to produce the desired transformation.  This approach 
does not need a constant discrete time-base, but can move ahead 
in time based upon discrete events, see for example [10], and 
[13].   An illustration of interconnected models is shown in 
Figure 4.  Each model can run independently, sharing data. 
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Figure 4.  Illustration of a dynamic model. 
 
 
Expert Intelligence (EI) Models 
 
An exploratory simulation was built (details available 
separately) that can be used to predict the aggregate behavior of 
consumers purchasing food.  This simulation is built using a 
discrete event environment based upon the state space 
framework, but is more general.  It provides for vector spaces 
containing discrete states that can be described by words as well 
as numbers.  Transformations can be generic rules, not restricted 
to mathematical operators.  This permits an IF this …., THEN 
that …., ELSE ….  format for decision rules.  This format 
supports direct translation of subject expert knowledge into 
model process rules.  The use of subject area experts is stressed 
in recent literature on modeling human behavior, particularly in 
the military environment. 
 
Prediction Systems, Inc. has developed a Computer-Aided 
Design (CAD) technology, the General Simulation System 
(GSS), for building large-scale simulations.  GSS provides an 
environment where subject area experts can read the rules 
written in a process language without knowledge of computer 
programming.  As opposed to a Program Design Language 
(PDL) or Universal Modeling Language (UML) approach, this 
language is translated into machine code.  Models are built and 
maintained directly in this environment. 
 
The GSS “consumer” simulation contains two models and an 
instrument that measures the results as the simulation runs.  The 
models were derived based upon the modeler’s basic knowledge 
of how decisions are made by both the consumer and the store 
manager.  We note that there are no outside influences on the 
simulation.  This is defined as a homogeneous model, implying 
there is no driving force vector, U. 
 
If we wanted to investigate the effect of losing a store, e.g., due 
to a fire or terrorist attack, we could create an external force that 
closes a store at some time during the scenario.  This would be 
an external force.  Likewise, we could investigate what would 
happen if a store closed and reopened over different periods of 
time due to labor strikes or other external forces.  These would 
result in nonhomogeneous models. 
 
One can consider the consumers and stores to be part of a much 
larger community.  In this case, the consumer model is just one 
of a larger set of models of community members that makes 

observations, makes decisions, and takes actions on many other 
aspects of life.  One can see how other aspects of a community 
can be modeled by having people who are experts in those 
aspects contribute to the model parameters and rules that 
implement the decision process. 
 
 
Artificial Intelligence (AI) Models 
 
We now consider the use of Artificial Intelligence (AI) 
approaches.  Figure 5 illustrates a neural net using driving forces 
to produce a prediction.   This approach falls into the general 
category of pattern recognition.  Neural nets can be “trained” to 
recognize patterns.  This has been shown to be a fast way to 
identify objects, moving in 3-D, by their shapes.  It can work 
well even when object images are fuzzy.  If patterns are 
recognized in the input, U, over some observation period, then a 
signal is produced indicating what patterns occurred.  
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Figure 5.  Illustration of an AI approach. 
 
This approach has been tried in schemes for predicting the stock 
market.  The simplest case is when the history of Z itself is used 
to predict its future path.  This implies that the data contains 
recognizable pattern repetitions.  This, in turn, implies that a 
recognizable component of Z is stationary.  From a 
mathematical standpoint, stationary or quasi-stationary systems 
can be represented by a homogeneous model, see [2]. 
 
Another good example is encryption.  Cracking codes is a 
pattern recognition problem.  AI approaches have been applied 
for years.  However, recent encryption techniques apparently 
render the required effort to be economically overwhelming. 
 
The more interesting case is recognition of nonstationary 
patterns in other data sets, U, that occur in advance of patterns in 
Z.  These could be predictive, but require a nonhomogeneous 
model.  This has been tried in the stock market where daily data 
has been recorded for publicly traded stocks for over 70 years.  
An enormous database of history exists for training neural nets.  
One would think this to be a powerful approach.  However, it 
has not been shown to be successful in any scientific literature, 
and to the best of our knowledge, companies that have touted the 
potential future of these approaches have not demonstrated any 
extra-ordinary success over the long term. 
 
 



EI - AI Hybrid Models 
 
On the other hand, experience has shown that, using small 
amounts of data with no repeating patterns, models can be built 
that provide very accurate predictions, see [2].  These are 
developed using expert knowledge of the mechanics of how 
driving forces affect the system.  Small amounts of data are 
sufficient to characterize one or two model parameters.  In these 
cases, the systems can be highly nonlinear.  Yet, using nonlinear 
models, one can provide accurate predictions.  We will consider 
the use of such models using a hybrid approach, see Figure 6. 
 
Prediction Systems, Inc. (PSI) has participated in a number of 
AI projects, applying various techniques to manage huge 
databases, perform nonlinear optimization, and support jammer 
management.  One of the projects entailed the use of neural nets 
to detect intrusions in the US Army Tactical Internet (TI).  
Briefly described, the approach maps AI sub-blocks into 
network components as they are organized, hierarchically, 
distributing the computational load.  The hierarchy reduces the 
bandwidth required to communicate accurate and timely views 
of the network at all tiers. 
 
More importantly, PSI’s experience with this application, as 
well as neural nets and adaptive algorithms in other projects 
indicates that the learning and processing times for adaptive 
algorithms, TAI in Figure 6, can be reduced considerably through 
smart preprocessing of information known in advance.  This is 
done using the EI models.  EI models are quite simple and fast 
relative to AI approaches, rendering TEI very small compared to 
TAI.  This greatly reduces the overall processing to be done in 
real time.  It also reduces the amount of observable data and 
training required relative to the pure AI approach. 
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Figure 6.  Illustration of a hybrid EI - AI approach. 

 
 
EI Models With Optimization 
 
Another approach to modeling system behavior uses 
optimization to identify parameters in an EI model.  This is 
illustrated in Figure 7.  The optimization process can be applied 
off-line, or adaptively in real time.  This is the approach found to 
be most useful when modeling decision processes for which 
expert knowledge can be introduced. 
 

Using this approach, expert human knowledge is incorporated 
into the EI models shown in Figure 7.  Unknown parameters are 
used to account for lack of knowledge.  However, these 
parameters are selected judiciously.  Their placement in the 
model is determined based upon where information is lacking.  
Often, one has reasonable knowledge of ranges on these 
parameter values.  Any piece of additional information that can 
be used to create the model cuts down on the size of the 
unknown space, leading to a faster solution. 
 
First hand experience on many projects clearly demonstrates that 
experts are aided significantly when observing the models as 
they behave in a simulated environment.  This generally leads to 
significant improvements in representation of the decision 
process. 
 
The optimization system used by PSI is built into the GSS 
environment.  It uses an EI approach, having adaptive 
algorithms that automatically formulate ensembles of data to 
generate distributions used to update the search process.  This 
system has been used to solve a wide variety of highly nonlinear 
problems, such as finding the best location for antennas in a 
hilly environment under threat jamming, or finding optimal 
flight paths for ELINT or SIGINT collections, accounting for 
threat air defense systems. 
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Figure 7.  Illustration of an optimized EI approach. 
 
As an example, the decision models for the consumers and store 
managers in the reference simulation can be optimized to meet 
their objectives.  The consumer generally wants to minimize his 
cost of purchases.  The store manager generally wants to 
maximize his profits.  Alternatively, given that one has 
observations on the quantities purchased or inventoried, 
parameters in the model can be optimized to match the observed 
data. 
 
Parametric And Sensitivity Analysis To Support The 
Modeling Process 
 
Another means of preprocessing to develop models using Expert 
Intelligence is by using simulation to support model analysis.  
For example, we can generate distributions of responses by 
running a sufficient number of simulations while varying 
parameters to determine if model results fall inside sensible 
ranges. 



ACCURACY CONSIDERATIONS 
 
As indicated above, additional accuracy can be obtained by 
modeling the effects of driving forces. To be useful, they must 
be observable and "lead" the response.  Otherwise they 
contribute no additional information for improving prediction 
accuracy.  In particular, we are concerned with the description of 
models which relate system responses to nonstationary driving 
forces, see [2].  These relations can be highly nonlinear and 
difficult to model if one does not understand the mechanics of 
the system.  Incorporation of these effects can lead to significant 
improvements in model accuracy. 
 
These two aspects of a model,  
 
• Expression of the structural properties of a system 
• Modeling the effects of driving forces 
 
represent additional information that is generally not contained 
in the response data.  This is particularly true when a system is 
nonlinear. 
 
Finally, we want to develop complex models without violating 
rules of parsimony, see Tukey, [20].  When using methods 
where the structure of a system is ignored, and a naive approach 
is pursued for model identification, then unknown parameters 
are used merely to fit the response data.  In this case, the 
modeler should be concerned about parsimony.  This is because 
additional coefficients add no information to condition the 
probability statement and contribute nothing to accuracy.  In 
fact, if they contain noise, they can decrease accuracy.  
However, if a model is enhanced by the benefit of additional 
knowledge of the structure of the mechanics, then these 
additions will serve to condition the probability statement so as 
to be more accurate, and the constraints of parsimony do not 
apply. 
 
A purchaser of predictions will judge one model to be superior 
to another if it provides him with consistently more accurate 
predictions of the future.  On this basis, there are many 
examples in engineering (e.g., modeling of integrated circuit 
chips) where models have been carefully constructed based on 
knowledge of the physical structure and mechanics.  The 
complexity of these models would appear to violate rules of 
parsimony as advocated by many statistical forecasters.  
Nevertheless, these models have provided outputs yielding 
excellent consistency with test results long after model 
development. 

SUMMARY 
 
Recent literature on modeling human behavior stresses the use 
of subject area experts to devise decision rules for modeling that 
behavior.  This leads to the desire for direct translation of rules 
described in a natural language.  The use of discrete event 
systems and simulation technology provides the framework for 
satisfying this goal.  This approach is termed Expert Intelligence 
(EI). 
 
Also investigated are Artificial Intelligence (AI) approaches.  
They are compared to the EI approach.  AI techniques are also 
combined to form an EI-AI Hybrid, and compared to the AI and 
EI approaches.  Finally, an EI Optimization approach is 
discussed where EI techniques are built into the optimization 
process. 
 
A Computer-Aided Design (CAD) technology for building large 
scale simulations has been used to model human behavior.  This 
technology, the General Simulation System (GSS), allows 
subject area experts to read rules written in a process language 
without knowledge of computer programming.  As opposed to a 
Program Design Language (PDL) or Universal Modeling 
Language (UML) approach, the English-like rules are 
automatically translated into machine code.  GSS also contains 
built-in optimization facilities that make the EI Optimization 
approach easy to use.  Optimization criteria can be automatically 
derived from graphical interfaces tailored to the problem being 
addressed. 
 
The EI approach with optimization supports the requirements for 
incorporating subject area expertise into the modeling process.  
It also provides a framework for building independent model 
architectures that can grow large, hierarchically, as more 
knowledge of the behavior mechanisms is incorporated into the 
models. 
 
Clearly this investigation merely scratches the surface on 
modeling to predict human behavior.  However, the acceleration 
of technological advances in related areas should serve to aid in 
this immense endeavor. 
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